Calculus II

Arc Length Formula

L=\int_{a}^{b}\sqrt{1+\left (\frac{dy}{dx} \right )^{2}}dx, a\leq x\leq b

______________________________________________________________

L’Hopital’s Rule

\lim_{x \to c}\frac{f(x)}{g(x)}=\lim_{x \to c}\frac{f'(x)}{g'(x)}

______________________________________________________________

Monotonic Sequences

A monotonic sequence is one where its terms are nondecreasing or nonincreasing.

a_1\leq a_2\leq a_3\leq \cdots \leq a_n\leq \cdots (nondecreasing sequence)

a_1\geq a_2\geq a_3\geq \cdots \geq a_n\geq \cdots (nonincreasing sequence)

______________________________________________________________

Geometric Series

\sum_{n=0}^{\infty}ar^n=a+ar+ar^2+\cdots +ar^n+\cdots ,a\neq 0

A geometric series diverges if \left | r \right |\geq1.

If 0< \left | r \right |< 1, then the geometric series converges to

\sum_{n=0}^{\infty }ar^n=\frac{a}{1-r}

______________________________________________________________

The nth-Term Test for Divergence

If \sum_{n=1}^{\infty }a_n, then \lim_{n \to \infty}a_n=0.

______________________________________________________________

The Integral Test

If \int_{1}^{\infty}f(x)dx diverges (or converges), then \sum_{n=1}^{\infty}a_n also diverges (or converges).

______________________________________________________________